Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2247885

RESUMEN

Health care systems worldwide have been battling the ongoing COVID-19 pandemic. Since the beginning of the COVID-19 pandemic, Lymphocytes and CRP have been reported as markers of interest. We chose to investigate the prognostic value of the LCR ratio as a marker of severity and mortality in COVID-19 infection. Between 1 March and 30 April 2020, we conducted a multicenter, retrospective cohort study of patients with moderate and severe coronavirus disease 19 (COVID-19), all of whom were hospitalized after being admitted to the Emergency Department (ED). We conducted our study in six major hospitals of northeast France, one of the outbreak's epicenters in Europe. A total of 1035 patients with COVID-19 were included in our study. Around three-quarters of them (76.2%) presented a moderate form of the disease, while the remaining quarter (23.8%) presented a severe form requiring admission to the ICU. At ED admission, the median LCR was significantly lower in the group presenting severe disease compared to that with moderate disease (versus 6.24 (3.24-12) versus 12.63 ((6.05-31.67)), p < 0.001). However, LCR was neither associated with disease severity (OR: 0.99, CI 95% (0.99-1)), p = 0.476) nor mortality (OR: 0.99, CI 95% (0.99-1)). In the ED, LCR, although modest, with a threshold of 12.63, was a predictive marker for severe forms of COVID-19.


Asunto(s)
COVID-19 , Humanos , Proteína C-Reactiva/metabolismo , SARS-CoV-2/metabolismo , Pandemias , Estudios Retrospectivos , Linfocitos/metabolismo , Servicio de Urgencia en Hospital
2.
Front Immunol ; 13: 985472, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2198862

RESUMEN

Introduction: Neuroendocrine cells release Catestatin (CST) from Chromogranin A (CgA) to regulate stress responses. As regards COVID-19 patients (COVID+) requiring oxygen supply, to date nobody has studied CST as a potential mediator in the regulation of immunity. Patients & Methods: Admission plasma CST and CgA - its precursor - concentrations were measured (ELISA test) in 73 COVID+ and 27 controls. Relationships with demographics, comorbidities, disease severity and outcomes were analysed (Mann-Whitney, Spearman correlation tests, ROC curves). Results: Among COVID+, 49 required ICU-admission (COVID+ICU+) and 24 standard hospitalization (COVID+ICU-). Controls were either healthy staff (COVID-ICU-, n=11) or COVID-ICU+ patients (n=16). Median plasma CST were higher in COVID+ than in controls (1.6 [1.02; 3.79] vs 0.87 [0.59; 2.21] ng/mL, p<0.03), with no difference between COVID+ and COVID-ICU+. There was no difference between groups in either CgA or CST/CgA ratios, but these parameters were lower in healthy controls (p<0.01). CST did not correlate with either hypoxia- or usual inflammation-related parameters. In-hospital mortality was similar whether COVID+ or not, but COVID+ had longer oxygen support and more complications (p<0.03). CST concentrations and the CST/CgA ratio were associated with in-hospital mortality (p<0.01) in COVID+, whereas CgA was not. CgA correlated with care-related infections (p<0.001). Conclusion: Respiratory COVID patients release significant amounts of CST in the plasma making this protein widely available for the neural regulation of immunity. If confirmed prospectively, plasma CST will reliably help in predicting in-hospital mortality, whereas CgA will facilitate the detection of patients prone to care-related infections.


Asunto(s)
COVID-19 , Cromogranina A , Humanos , Morbilidad , Oxígeno , Fragmentos de Péptidos
3.
Frontiers in immunology ; 13, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2073735

RESUMEN

Introduction Neuroendocrine cells release Catestatin (CST) from Chromogranin A (CgA) to regulate stress responses. As regards COVID-19 patients (COVID+) requiring oxygen supply, to date nobody has studied CST as a potential mediator in the regulation of immunity. Patients & Methods Admission plasma CST and CgA - its precursor - concentrations were measured (ELISA test) in 73 COVID+ and 27 controls. Relationships with demographics, comorbidities, disease severity and outcomes were analysed (Mann-Whitney, Spearman correlation tests, ROC curves). Results Among COVID+, 49 required ICU-admission (COVID+ICU+) and 24 standard hospitalization (COVID+ICU-). Controls were either healthy staff (COVID-ICU-, n=11) or COVID-ICU+ patients (n=16). Median plasma CST were higher in COVID+ than in controls (1.6 [1.02;3.79] vs 0.87 [0.59;2.21] ng/mL, p<0.03), with no difference between COVID+ and COVID-ICU+. There was no difference between groups in either CgA or CST/CgA ratios, but these parameters were lower in healthy controls (p<0.01). CST did not correlate with either hypoxia- or usual inflammation-related parameters. In-hospital mortality was similar whether COVID+ or not, but COVID+ had longer oxygen support and more complications (p<0.03). CST concentrations and the CST/CgA ratio were associated with in-hospital mortality (p<0.01) in COVID+, whereas CgA was not. CgA correlated with care-related infections (p<0.001). Conclusion Respiratory COVID patients release significant amounts of CST in the plasma making this protein widely available for the neural regulation of immunity. If confirmed prospectively, plasma CST will reliably help in predicting in-hospital mortality, whereas CgA will facilitate the detection of patients prone to care-related infections.

4.
J Clin Med ; 11(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2006083

RESUMEN

INTRODUCTION: Understanding hypoxemia, with and without the clinical signs of acute respiratory failure (ARF) in COVID-19, is key for management. Hence, from a population of critical patients admitted to the emergency department (ED), we aimed to study silent hypoxemia (Phenotype I) in comparison to symptomatic hypoxemia with clinical signs of ARF (Phenotype II). METHODS: This multicenter study was conducted between 1 March and 30 April 2020. Adult patients who were presented to the EDs of nine Great-Eastern French hospitals for confirmed severe or critical COVID-19, who were then directly admitted to the intensive care unit (ICU), were retrospectively included. RESULTS: A total of 423 critical COVID-19 patients were included, out of whom 56.1% presented symptomatic hypoxemia with clinical signs of ARF, whereas 43.9% presented silent hypoxemia. Patients with clinical phenotype II were primarily intubated, initially, in the ED (46%, p < 0.001), whereas those with silent hypoxemia (56.5%, p < 0.001) were primarily intubated in the ICU. Initial univariate analysis revealed higher ICU mortality (29.2% versus 18.8%, p < 0.014) and in-hospital mortality (32.5% versus 18.8%, p < 0.002) in phenotype II. However, multivariate analysis showed no significant differences between the two phenotypes regarding mortality and hospital or ICU length of stay. CONCLUSIONS: Silent hypoxemia is explained by various mechanisms, most physiological and unspecific to COVID-19. Survival was found to be comparable in both phenotypes, with decreased survival in favor of Phenotype II. However, the spectrum of silent to symptomatic hypoxemia appears to include a continuum of disease progression, which can brutally evolve into fatal ARF.

5.
Diagnostics (Basel) ; 12(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1731971

RESUMEN

INTRODUCTION: For the past two years, healthcare systems worldwide have been battling the ongoing COVID-19 pandemic. Several studies tried to find predictive factors of mortality in COVID-19 patients. We aimed to research age as a predictive factor associated with in-hospital mortality in severe and critical SARS-CoV-2 infection. METHODS: Between 1 March and 20 April 2020, we conducted a multicenter and retrospective study on a cohort of severe COVID-19 patients who were all hospitalized in the Intensive Care Unit (ICU). We led our study in nine hospitals of northeast France, one of the pandemic's epicenters in Europe. RESULTS: The median age of our study population was 66 years (58-72 years). Mortality was 24.6% (CI 95%: 20.6-29%) in the ICU and 26.5% (CI 95%: 22.3-31%) in the hospital. Non-survivors were significantly older (69 versus 64 years, p < 0.001) than the survivors. Although a history of cardio-vascular diseases was more frequent in the non-survivor group (p = 0.015), other underlying conditions and prior level of autonomy did not differ between the two groups. On multivariable analysis, age appeared to be an interesting predictive factor of in-hospital mortality. Thus, age ranges of 65 to 74 years (OR = 2.962, CI 95%: 1.231-7.132, p = 0.015) were predictive of mortality, whereas the group of patients aged over 75 years was not (OR = 3.084, CI 95%: 0.952-9.992, p = 0.06). Similarly, all comorbidities except for immunodeficiency (OR = 4.207, CI 95%: 1.006-17.586, p = 0.049) were not predictive of mortality. Finally, survival follow-up was obtained for the study population. CONCLUSION: Age appears to be a relevant predictive factor of in-hospital mortality in cases of severe or critical SARS-CoV-2 infection.

6.
J Pers Med ; 11(12)2021 12 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1555000

RESUMEN

(1) Introduction: According to recent studies, the ratio of C-reactive-protein to lymphocyte is more sensitive and specific than other biomarkers associated to systemic inflammatory processes. This study aimed to determine the prognostic value of CLR on COVID-19 severity and mortality at emergency department (ED) admission. (2) Methods: Between 1 March and 30 April 2020, we carried out a multicenter and retrospective study in six major hospitals of northeast France. The cohort was composed of patients hospitalized for a confirmed diagnosis of moderate to severe COVID-19. (3) Results: A total of 1,035 patients were included in this study. Factors associated with infection severity were the CLR (OR: 1.001, CI 95%: (1.000-1.002), p = 0.012), and the lymphocyte level (OR: 1.951, CI 95%: (1.024-3.717), p = 0.042). In multivariate analysis, the only biochemical factor significantly associated with mortality was lymphocyte rate (OR: 2.308, CI 95%: (1.286-4.141), p = 0.005). The best threshold of CLR to predict the severity of infection was 78.3 (sensitivity 79%; specificity 47%), and to predict mortality, was 159.5 (sensitivity 48%; specificity 70%). (4) Conclusion: The CLR at admission to the ED could be a helpful prognostic biomarker in the early screening and prediction of the severity and mortality associated with SARS-CoV-2 infection.

7.
J Clin Med ; 10(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1264482

RESUMEN

(1) Introduction: The neutrophil-to lymphocyte ratio is valued as a predictive marker in several inflammatory diseases. For example, an increasing NLR is a risk factor of mortality in sepsis. It also appears to be helpful in other settings such as cancer. The aim of our work was to study the prognostic value of NLR for disease severity and mortality in patients infected with SARS-CoV-2 upon their admission to the Emergency Department (ED) and its early variation (ΔNLR) in the first 24 h of management (H-24). (2) Methods: Between 1 March and 30 April 2020, we conducted a multicenter and retrospective cohort study of patients with moderate or severe coronavirus disease 19 (COVID-19), who were all hospitalized after presenting to the ED. (3) Results: A total of 1035 patients were included in our study. Factors associated with infection severity were C-reactive protein level (OR: 1.007, CI 95%: [1.005-1.010], p < 0.001), NLR at H-24 (OR: 1.117, CI 95%: [1.060-1.176], p < 0.001), and ΔNLR (OR: 1.877, CI 95%: [1.160-3.036], p: 0.01). The best threshold of ΔNLR to predict the severity of infection was 0.222 (sensitivity 56.1%, specificity 68.3%). In multivariate analysis, the only biochemical factor significantly associated with mortality was again ΔNLR (OR: 2.142, CI 95%: ([1.132-4.056], p: 0.019). The best threshold of ΔNLR to predict mortality was 0.411 (sensitivity 53.3%; specificity 67.3%). (4) Conclusion: The NLR and its early variation (ΔNLR) could help physicians predict both severity and mortality associated with SARS-CoV-2 infection, hence contributing to optimized patient management (accurate triage and treatment).

8.
Trials ; 22(1): 131, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1083070

RESUMEN

OBJECTIVES: The main objective of this study is to evaluate the effect of intravenous lidocaine on gas exchange and inflammation in acute respiratory distress syndrome due or not to Covid-19 pneumonia. TRIAL DESIGN: This is a prospective monocentric, randomized, quadruple-blinded and placebo-controlled superiority trial. This phase 3 clinical study is based on two parallel groups received either intravenous lidocaine 2% or intravenous NaCl 0.9%. PARTICIPANTS: This study has been conducted at the University Hospitals of Strasbourg (medical and surgical Intensive Care Units in Hautepierre Hospital) since the 4th November 2020. The participants are 18 years-old and older, hospitalized in ICU for a moderate to severe ARDS according to the Berlin definition; they have to be intubated and sedated for mechanical protective ventilation. All participants are affiliated to the French Social security system and a dosage of beta HCG has to be negative for women of child bearing age . For the Covid-19 subgroup, the SARS-CoV2 infection is proved by RT-PCR <7 days before admission and/or another approved diagnostic technique and/or typical CT appearance pneumonia. The data are prospectively collected in e-Case Report Forms and extracted from clinical files. INTERVENTION AND COMPARATOR: The participants are randomised in two parallel groups with a 1:1 ratio. In the experimental group, patients receive intravenous lidocaine 2% (20mg/mL) (from FRESENIUS KABI France); the infusion protocol provide a bolus of 1 mg/kg (ideal weight), followed by 3 mg/kg/h for the first hour, 1.5 mg/kg/h for the second hour, 0.72 mg/kg/h for the next 22 hours and then 0.6 mg/kg/h for 14 days at most or 24 hours after extubation or ventilator-weaning. The patients in the control group receive intravenous NaCl 0.9% (9 mg/mL) (from Aguettant, France) as placebo comparator; the infusion protocol provide a bolus of 0.05 mL/kg (ideal weight), followed by 0.15 mL/kg/h for the first hour, 0.075 mL/kg/h for the second hour, 0.036 mL/kg/h for the next 22 hours, and the 0.03 mL/kg/h for up to 14 days or 24 hours after extubation or ventilator-weaning. Lidocaine level is assessed at H4, D2, D7 and D14 to prevent local anesthetics systemic toxicity. Clinical data and biological samples are collected to assess disease progression. MAIN OUTCOMES: The primary outcome is the evolution of alveolar-capillary gas exchange measured by the PaO2/FiO2 ratio after two days of treatment. The secondary endpoints of the study include the following: Evolution of PaO2/FiO2 ratio at admission and after 21 days of treatment Number of ventilator-free days Anti-inflammatory effects by dosing inflammatory markers at different timepoints (ferritin, bicarbonate, CRP, PCT, LDH, IL-6, Troponin HS, triglycerides, complete blood count, lymphocytes) Anti-thrombotic effects by dosing platelets, aPTT, fibrinogen, D-dimers, viscoelastic testing and identification of all thromboembolic events up to 4 weeks. Plasmatic concentration of lidocaine and albumin Incidence of adverse events like cardiac rhythm disorders, need of vasopressors, any modification of the QRS, QTc or PR intervals every day Ileus recovery time Consumption of hypnotics, opioids, neuromuscular blockers. Lengths of stay in the ICU, incidence of reintubation and complications due to intensive care unit care (mortality until 90 days, pneumothorax, bacterial pneumopathy, bronchospasm, cardiogenic shock, acute renal failure, need of renal dialysis, delirium, atrial fibrillation, stroke (CAM-ICU score), tetraplegia (MCR score)). Incidence of cough and sore throat at extubation or ventilator-weaning and within 24 hours. All these outcomes will be evaluated according to positivity to Sars-Cov-2. RANDOMISATION: The participants who meet the inclusion criteria and have signed written informed consent will be randomly allocated using a computer-generated random number to either intervention group or control group. The distribution ratio of the two groups will be 1:1, with a stratification according to positivity to Sars-Cov-2. BLINDING (MASKING): All participants, care providers, investigator and outcomes assessor are blinded. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): We planned to randomize fifty participants in each group, 100 participants total. TRIAL STATUS: The amended protocol version 2.1 was approved by the Ethics Committee "Comité de Protection des Personnes Sud-Méditerranée II on January 8, 2021 and by the Commission Nationale de l'Informatique et des Libertés (CNIL) on November 10, 2020. The study is currently recruiting participants; the recruitment started in November 2020 and the planned recruitment period is three years. TRIAL REGISTRATION: The trial was registered on clinicaltrials.gov on October 30, 2020 and identified by number NCT04609865 . FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Lidocaína/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Administración Intravenosa , COVID-19/sangre , COVID-19/fisiopatología , Ensayos Clínicos Fase III como Asunto , Estudios de Equivalencia como Asunto , Humanos , Inflamación/sangre , Intercambio Gaseoso Pulmonar , Ensayos Clínicos Controlados Aleatorios como Asunto , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/fisiopatología , SARS-CoV-2 , Resultado del Tratamiento
9.
Microorganisms ; 9(2)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1069849

RESUMEN

INTRODUCTION: Healthcare systems worldwide have been battling the ongoing COVID-19 pandemic. Eosinophils are multifunctional leukocytes implicated in the pathogenesis of several inflammatory processes including viral infections. We focus our study on the prognostic value of eosinopenia as a marker of disease severity and mortality in COVID-19 patients. METHODS: Between 1 March and 30 April 2020, we conducted a multicenter and retrospective study on a cohort of COVID-19 patients (moderate or severe disease) who were hospitalized after presenting to the emergency department (ED). We led our study in six major hospitals of northeast France, one of the outbreak's epicenters in Europe. RESULTS: We have collected data from 1035 patients, with a confirmed diagnosis of COVID-19. More than three quarters of them (76.2%) presented a moderate form of the disease, while the remaining quarter (23.8%) presented a severe form requiring admission to the intensive care unit (ICU). Mean circulating eosinophils rate, at admission, varied according to disease severity (p < 0.001), yet it did not differ between survivors and non-survivors (p = 0.306). Extreme eosinopenia (=0/mm3) was predictive of severity (aOR = 1.77, p = 0.009); however, it was not predictive of mortality (aOR = 0.892, p = 0.696). The areas under the Receiver operating characteristics (ROC) curve were, respectively, 58.5% (CI95%: 55.3-61.7%) and 51.4% (CI95%: 46.8-56.1%) for the ability of circulating eosinophil rates to predict disease severity and mortality. CONCLUSION: Eosinopenia is very common and often profound in cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Eosinopenia was not a useful predictor of mortality; however, undetectable eosinophils (=0/mm3) were predictive of disease severity during the initial ED management.

10.
J Clin Med ; 9(11)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: covidwho-945846

RESUMEN

INTRODUCTION: The COVID-19 outbreak had a major impact on healthcare systems worldwide. Our study aims to describe the characteristics and therapeutic emergency mobile service (EMS) management of patients with vital distress due to COVID-19, their in-hospital care pathway and their in-hospital outcome. METHODS: This retrospective and multicentric study was conducted in the six main centers of the French Greater East region, an area heavily impacted by the pandemic. All patients requiring EMS dispatch and who were admitted straight to the intensive care unit (ICU) were included. Clinical data from their pre-hospital and hospital management were retrieved. RESULTS: We included a total of 103 patients (78.6% male, median age 68). In the initial stage, patients were in a critical condition (median oxygen saturation was 72% (60-80%)). In the field, 77.7% (CI 95%: 71.8-88.3%) were intubated. Almost half of our population (45.6%, CI 95%: 37.1-56.9%) had clinical Phenotype 1 (silent hypoxemia), while the remaining half presented Phenotype 2 (acute respiratory failure). In the ICU, a great number had ARDS (77.7%, CI 95% 71.8-88.3% with a PaO2/FiO2 < 200). In-hospital mortality was 33% (CI 95%: 24.6-43.3%). The two phenotypes showed clinical and radiological differences (respiratory rate, OR = 0.98, p = 0.02; CT scan lesion extension >50%, OR = 0.76, p < 0.03). However, no difference was found in terms of overall in-hospital mortality (OR = 1.07, p = 0.74). CONCLUSION: The clinical phenotypes appear to be very distinguishable in the pre-hospital field, yet no difference was found in terms of mortality. This leads us to recommend an identical management in the initial phase, despite the two distinct presentations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA